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Abstract
Arctic fishes are threatened by climatic change and other anthropogenic stressors, yet information on how such changes

impact survival remains scarce. Acoustic telemetry has become valuable for studying aspects of fish ecology, including survival,
which is invaluable in understanding potential responses to changing conditions. In Cambridge Bay, NU, we have been using
acoustic telemetry to study movements and habitat use of the culturally and commercially important Arctic char (Salvelinus
alpinus). Here, we combine acoustic telemetry data and Bayesian multistate mark–recapture models to study the survival of
Arctic char from 2014 to 2018 in the region in freshwater and marine/estuarine habitats. We found that survival probabilities
were high (>0.87) and models considering two environments (freshwater and marine) perform better than those considering
three (including estuarine habitats). Furthermore, the survival in fresh water was higher than survival in marine/estuary
environments. Overall, the results of this study further our understanding of important demographic parameters (i.e., survival)
for Arctic char in the region, which will be useful in refining fishery management plans for the largest commercial fishery for
this species in Canada.
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Résumé
Si les poissons de l’Arctique sont menacés par les changements climatiques et autres facteurs de stress d’origine humaine,

l’information sur l’incidence de ces changements sur leur survie demeure rare. La télémétrie acoustique est devenue prisée
pour étudier divers aspects de l’écologie des poissons, notamment la survie, un paramètre essentiel pour comprendre les
possibles réactions à des conditions changeantes. Nous utilisons la télémétrie acoustique pour étudier les déplacements
et l’utilisation d’habitats par les ombles chevaliers (Salvelinus alpinus), une espèce d’importance culturelle et commerciale,
dans la baie Cambridge (Nunavut). Nous combinons des données de télémétrie acoustique et des modèles bayésiens multi-
états de marquage–recapture afin d’étudier la survie des ombles chevaliers de 2014 à 2018 dans des habitats d’eau douce et
marins/estuariens de cette région. Nous relevons que les probabilités de survie sont élevées (>0,87) et que les modèles qui intè-
grent deux types de milieux (d’eau douce et marin) donnent de meilleurs résultats que ceux qui en intègrent trois (incluant les
habitats estuariens). La survie en eau douce s’avère en outre plus grande que la survie dans les milieux marins/estuariens. Glob-
alement, les résultats de l’étude améliorent la compréhension de paramètres démographiques importants (c.-à-d., la survie)
pour l’omble chevalier dans la région, ce qui sera utile pour peaufiner les plans de gestion des ressources pour la plus impor-
tante pêche commerciale de cette espèce au Canada. [Traduit par la Rédaction]

Mots-clés : télémétrie acoustique, omble chevalier, statistiques bayésiennes, modèles de marquage–recapture, écologie de la
survie

Introduction
Climate change in the Canadian Arctic is occurring at some

of the fastest rates on Earth (Prowse et al. 2006; Barber et al.
2008; Pithan and Mauritsen 2014). This rapid climate change,

coupled with other human-related factors such as increased
harvesting and negative impacts from increased shipping
activities, poses clear and significant threats to the survival
and population persistence of many freshwater and anadro-
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mous Arctic fish species (Caza-Allard et al. 2021). Due to
a paucity of data and a subsequent poor understanding of
the biology and ecology of many Arctic fish species, predict-
ing how those species will respond and adapt to changing
climatic conditions and anthropogenic pressures has been
challenging (Reist et al. 2006; Crossin et al. 2017). Some cli-
mate change effects noted for Arctic anadromous fishes in-
clude, among other things, changes in trophic positioning
and diet (Ulrich and Tallman 2021), declines in fish condi-
tion (Lehnherr et al. 2018), impacts to early year growth, and
life history variation (Grenier and Tallman 2021), shifting ge-
ographic ranges and potentially local extinctions (Reist et al.
2006). Few studies to date, however, have assessed changes in
survivorship and mortality in anadromous fishes relating to
climate change in the Canadian North. All told, the impacts
of Arctic climate change on anadromous fishes remain enig-
matic and future studies at high latitudes will be important
for understanding the potential and realized impacts on this
important group of fishes.

Recent advances in animal tracking technologies such as
acoustic telemetry have enabled researchers to collect enor-
mous amounts of data on animal movement and habitat use
over large geographic scales (Klimley et al. 1998; Donaldson
et al. 2014; Hussey et al. 2015), significantly increasing the
overall understanding of the ecology and biology of high-
latitude fish species (Peklova et al. 2012; Hussey et al. 2015,
2017). For example, data from acoustic telemetry have pri-
marily been used for studying spatiotemporal aspects of an-
imal movements in both marine and freshwater environ-
ments (Heupel and Simpfendorfer 2002; McMichael et al.
2010; Lees et al. 2021). More recently, acoustic telemetry
data have been used to estimate demographic parameters
such as survival probability and population size, with com-
parable or better precision than conventional capture–mark–
recapture studies (Pollock et al. 2004; Dudgeon et al. 2015;
Lees et al. 2021). Estimating survival using acoustic data
has become particularly important for understanding how
fishing and natural mortality impact population persistence
(Crossin et al. 2017; Lees et al. 2021).

Incorporating acoustic telemetry data, the most popular
approach for estimating survival probabilities has been the
use of the Cormack–Jolly–Seber (CJS) model (Cormack 1964;
Jolly 1965; Seber 1965). However, when there are few detec-
tion records from certain sites, the estimated survival proba-
bilities with CJS models suffer from low precision due to low
recapture rates (Pollock et al. 1990; O’Brien et al. 2005; Morris
et al. 2006). As such, using CJS models, it is often not pos-
sible to obtain stable estimates for individual survival prob-
abilities for all sites and (or) environments. In this context,
multistate mark–recapture models can be used to deal with
sparseness in data by borrowing information across regions
(Calvert et al. 2009). Early applications of multistate mark–
recapture models can be found in Arnason (1972), Hestbeck
et al. (1991), and Brownie et al. (1993). Parameter estima-
tion of the multistate mark–recapture models can be done
using either the frequentist or Bayesian framework. The
Bayesian framework has been gaining popularity for a variety
of reasons, including its extreme flexibility, greater precision,
and ability to incorporate prior knowledge about parame-

ters (Harwood and Stokes 2003; Calvert et al. 2009; Kéry and
Schaub 2011). Through simulation studies and real-world ap-
plications, Calvert et al. (2009) showed that using a hierarchi-
cal Bayesian approach to multistate mark–recapture, one can
obtain more precise and accurate parameter estimates than
nonhierarchical approach. Thus, hierarchical Bayesian ap-
proaches using acoustic telemetry data and mark–recapture
methods hold promise for estimating demographic parame-
ters using nonconventional methods.

The objective of this study was to use the multiyear acous-
tic telemetry data set that has been generated for Arctic char
(Salvelinus alpinus) in the Cambridge Bay region of Nunavut to
estimate survival probabilities of this culturally and commer-
cially important species. Here, we have been using acoustic
telemetry since 2013 to further our understanding of move-
ments and freshwater and marine habitat use of Arctic char
in the region (Moore et al. 2016; Harris et al. 2020a). The
region is home to the largest commercial fishery for this
species in Canada; yet, there is still a paucity of informa-
tion on many demographic parameters highlighting the need
to employ nonconventional methods for parameter estima-
tion. Previously, Caza-Allard et al. (2021) employed conven-
tional CJS methodology to estimate survival and encounter
probabilities for Arctic char in the region. However, due to
low recapture rates in freshwater and estuary environments,
CJS models are not ideal to estimate survival probabilities of
Arctic char in those environments. Furthermore, Caza-Allard
et al. (2021) estimated survival solely in the marine environ-
ment despite the fact the Arctic char in the region spend
more than 10 months of the year in fresh water. Hence, in
this study, we used more flexible hierarchical Bayesian mul-
tistate mark–recapture models to estimate survival probabili-
ties over multiple years (2014–2018) in marine/estuarine and
freshwater environments for Arctic char tagged specifically
in the Ekalluk River/Ferguson Lake system, where much of
our acoustic telemetry efforts have been focused.

Materials and methods

Study area and fishery information
The study takes place on southern Victoria Island in the

Cambridge Bay region of Nunavut (Fig. 1). Our acoustic
telemetry array in the area consists of stations that cover
marine (Wellington Bay and adjacent coastal areas), estuary
(Lauchlan, Halokvik, Surrey and Ekalluk river estuaries), and
freshwater (Ferguson Lake) environments. Detailed descrip-
tions of the acoustic array and station information can be
found in Moore et al. (2016) and Harris et al. (2020a). Com-
mercial fishing for Arctic char in the Cambridge Bay region
started in 1960, and as mentioned above, the region now ac-
counts for the largest commercial fishery for Arctic char in
Canada (Harris et al. 2020a). Presently, five waterbodies are
actively fished with a combined available annual quota of
56 100 kg (Harris et al. 2020b). The Ekalluk River commer-
cial fishery, which now takes place in Ferguson Lake target-
ing Arctic char after they have returned to fresh water from
summer foraging, is the largest in the region with a 20 000 kg
quota (DFO 2014).
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Fig. 1. Study area on southern Victoria Island within the Kitikmeot Sea region of Nunavut showing receivers that we considered
in this study (circles), and acoustic tagging locations (stars). The location of the community of Cambridge Bay is shown with a
black arrow. Tagging information is described in Table 1. Map was modified form Harris et al. (in press). The original map was
created with R package "maps" (Becker et al. 2018) using NAD83 projection, and layers for rivers and lakes were downloaded
from the National Topographic Database of Canada.

Experimental setup and data
This study is based on a sample of 188 Arctic char acous-

tically tagged (VEMCO V16 transmitters) between 2014 and
2018 focusing on those from, or presumed to be from, the
Ekalluk River/Ferguson Lake system (Table 1). Over the years,
acoustic data have been collected using 99 receivers (VEMCO
VR2W), including estuary and marine stations in the region
and freshwater stations in Ferguson Lake (Fig. 1). Some re-
ceivers were repositioned during the study. Hence, we incor-
porated acoustic detections from 30 receivers, which were
fixed or moved slightly (less than the detection range of the
acoustic tags (Moore et al. 2016)) and continuously in opera-
tion between 2014 and 2018. Additional information on the
tagging process and the experimental setup can be found in
Moore et al. (2016) and Harris et al. (2020a). For each year of
study, our acoustic tagging procedure was approved by the
Fisheries and Oceans Canada (DFO) Animal Care Committee
and the procedure conforms to all animal care laws in Canada
(permit number: FWI-ACC-2013-2019). Licenses to Fish for Sci-
entific Purposes were also approved annually by DFO.

Multistate capture–recapture models
The models we present in this paper are based on the

multistate capture–recapture with Bayesian framework us-

ing state-space formulation presented in Kéry and Schaub
(2011). State-space models are a type of hierarchical mod-
els that are increasingly used to model complex ecological
data observed with error (King 2012; Auger-Méthé et al. 2021).
Using a state-space formulation for capture–recapture data,
we can specify the model as two separate submodels (lev-
els) for the demographic process and the observation process
(Gimenez et al. 2007; King 2012). This can be generally ex-
pressed as

xt = f (xt−1)(1)

yt = g (xt, εt )(2)

where xt denotes the true state (e.g., alive or dead) and yt

denotes the observed state (e.g., observed or not observed).
Here, f(.) and g(.) represent the process model and the obser-
vation model, respectively. The process model describes the
true state, and the observation model maps the true state to
the observed state. The parameter εt is the observation error.

The process model

Consider a mark–recapture setting where n number of fish
were captured and observed in T number of recapture occur-
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Table 1. Tagging information for acoustically tagged Arctic char used in this study.

Location/fishery Lat. Long. Year
No.

tagged Dates

Fork length
(mm;

mean ± SD)
Weight (g;

mean ± SD)

Ekalluk River (EKA) 69.406836◦ −106.316685◦ 2013 30 10–12 July 717 ± 57 4013 ± 1065

2014 30 11–12 July 670 ± 85 3192 ± 1183

2015 75 9–11 July 729 ± 83 4103 ± 1212

Spawning Lake (SPW) 69.363741◦ −105.045023◦ 2016 23 14–15 August 761 ± 62 4601 ± 1056

Wishbone Lake (WIS) 69.555709◦ −104.178389◦ 2016 19 20–21 August 734 ± 66 4247 ± 8330

Roberts Bay (ROB) 69.366612◦ −104.976021◦ 2016 21 25–26 August 783 ± 68 5319 ± 1467

Ferguson Lake (FER) 69.461544◦ −106.107964◦ 2017 6 13–14 August 784 ± 81 5450 ± 2056

Heart Lake (HRT) 69.76876◦ −104.386835◦ 2017 19 22–23 August 671 ± 52 3345 ± 6980

Note: Shown are the tagging location (and location code), coordinates for the tagging location, dates of tagging, sample sizes, and length and weight information.

rences. Let xi,t denotes the true state of the ith fish at time t,
and yi,t denotes the observed state. Let xi,ei be the true state
of the ith fish at the first capture occurs at time ei that is ob-
served without error. Then, conditioning on the known first
capture, the process model (state equation) can be written as

xi,t+1 | xi,t ∼ multinomial
(
1,Ωxi,t ,1...K

)
, i = 1...n, and t ≥ ei(3)

where K is the total number of true states and Ωxi,t ,1...K is
a vector of length K, where the elements are the transition
probabilities of a fish given its true state at time t (i.e., xi, t).
Given the capture occasion and state, we assume that the sur-
vival/transition probabilities (Ωxi,t ,1...K ) to be independent of
the fish.

First, consider a state-space process with two environments
(M: marine/estuary and F: freshwater). Let φM and φF be
environment-specific survival probabilities for the marine-
estuary environment and freshwater environment, respec-
tively. Let ψMF and ψFM denote movement probabilities be-
tween each environment. Then, the process can be repre-
sented by a 3 × 3 matrix, which is usually referred to as the
transition matrix (Table 2). Note that the rows of the transi-
tion matrix are Ωxi,t ,1...K in eq. 3. In this formulation, as used
in Kéry and Schaub (2011), we assume that a fish is alive in
the environment at time t and then moves to the next en-
vironment between t and t + 1. That is, transitions among
states are instantaneous and hence, there is no mortality
while moving between environments.

Consider a state-space process with three environments (M:
marine, E: estuary, and F: freshwater). Now, the list of states
at a given time point is “alive in the marine environment”,
“alive in the estuary environment”, “alive in the freshwa-
ter environment”, and “dead”. Similarly to the previous case,
the process can be represented by a 4 × 4 transition matrix
(Table 3).

Observation model

The second component of the model is the observation
model given by

yi,t | xi,t ∼ multinomial
(
1,Θxi,t ,1...K

)
, i = 1...n, and t ≥ ei(4)

where Θxi,t ,1...K is also a vector of length K, where the ele-
ments are the observation probabilities of a fish at each state

given it’s state at time t (i.e., xi, t). Here as well, we assume,
given the capture occasion and state, observation probabili-
ties (Θxi,t ,1...K ) to be independent of the fish.

Again, consider a process model with two environments:
M and F. Let ps,t be the probability of observing a tagged fish
that is alive in environment s at time t. Here, we assume that
a fish in environment s can only be observed in environment s
but cannot be observed in another environment. Thus the ob-
servation process is conditional on the state process and the
first capture and this can be represented by a 3 × 3 matrix
(Table 4). The rows of this matrix are Θxi,t ,1...K in eq. 4. Sim-
ilarly, the observation matrix for a state-space process with
three environments can be written as in Table 5.

We further assume that the fish are independent of each
other, the fish and states are recorded without error, and no
tags are lost. The posterior distribution can be written as

P (φ,ψ, p | y) = f (y | x, p) × f (x | φ,ψ) × f (φ,ψ, p)(5)

Here, φ, ψ, and p are the vectors of environment-specific
survival probabilities, the vector of transition probabilities,
and the vector of observation probabilities, respectively. For
all the models, since all the parameters are probabilities with
the support [0,1], Beta(α, β) distribution was used as the prior
for all parameters. In the model estimation, we used α = 1
and β = 1 so that the priors were noninformative uniform
for all parameters.

Data preparation

Since the transmission of an acoustic ping from an indi-
vidual fish to receiver takes just a few milliseconds, each
detection can be considered as an instantaneous sampling
point. There were millions of such detection records in our
data set. If we consider the time point of each detection to
be a sampling point, only one fish will be detected at each
point. This will result in the detection matrix (the matrix with
detection records in which each row represents a fish and
columns are sampling points) having a large number of en-
tries with the unobserved state, which is usually represented
by zeroth state. To avoid that, we pooled the detection record
over time bins and the initial date of the bin is considered
as the sampling point. If the fish was detected at least once
during a certain time interval, we recorded the state of the
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Table 2. State transition matrix for a state-space process with two environments.

True state at time t + 1

Environment M Environment F Dead

True state at time t

Environment M φM(1 − ψMF) φMψMF 1 − φM

Environment F φFψFM φF(1 − ψFM) 1 − φF

Dead 0 0 1

Note: Here, φM and φF are environment-specific survival probabilities for the marine-estuary environment (M) and the fresh-
water environment (F), while ψMF and ψFM are movement probabilities.

Table 3. State transition matrix for a state-space process with three environments.

Marine Estuary Freshwater Dead

Marine φM(1 − ψME − ψMF) φMψME φMψMF 1 − φM

Estuary φEψEM φE(1 − ψEF − ψEM) φEψEF 1 − φE

Freshwater φFψFM φFψFE φF(1 − ψFM − ψFE) 1 − φF

Dead 0 0 0 1

Note: Here, φM, φE, and φF are environment-specific survival probabilities for the marine (M), estuary (E) and freshwater (F)
environments, respectively, while ψME, ψMF, ψEM, ψEF, ψFM, and ψFE are movement probabilities.

Table 4. Observation matrix for a state-space process with two environments.

Observation at time t

Environment M Environment F Not seen

True state at time t

Environment M pM 0 1 − pM

Environment F 0 pF 1 − pF

Dead 0 0 1

Note: Respectively, pM and pF are the observation probabilities at marine-estuary environment (M) and freshwater (F) at time t.

Table 5. Observation matrix for a state-space process with three environments.

Observed at marine Observed at estuary Observed at freshwater Not observed

Marine pM 0 0 1 − pM

Estuary 0 pE 0 1 − pE

Freshwater 0 0 pF 1 − pF

Dead 0 0 0 1

Note: Respectively, pM, pE, and pF are the observation probabilities at marine (M), estuary (E), and freshwater (E) environments
at time t.

fish corresponding to the environment in which the fish was
observed. When the fish was detected in multiple environ-
ments, the state in which the fish stayed the longest was
assigned.

The area is subjected to a long winter where detection prob-
abilities are lower due to inactivity in fresh water (Mulder
et al. 2018). This sparseness caused nonconvergence issues in
our initial models and, therefore, we pooled the detection
records over time intervals under three different scenarios.
We used binning intervals with unequal lengths to avoid the
effect of overwintering (Table 6). For scenario 1, the detection
records were binned into two time intervals for each year:
June–September and October–May. June–September would
be representative of times when Arctic char would be migrat-
ing between freshwater and marine environments and when
they would be foraging in marine environments (Moore et al.
2016). October–May, Arctic char in the region would be over-
wintering. In scenario 2, detection records were binned into
three periods annually: June–September, October–December,
and January–May. The interval October–December would cap-

ture the spawning and post-spawning period of Arctic char
in the region. In scenario 3, annual detections were binned
into six periods as June, July, August, September, October–
December, and January–May.

Model estimation and evaluation
The models were fitted using the Bayesian Markov chain

Monte Carlo (MCMC) approach with "JAGS" (Plummer 2003)
in R using the package "R2jags" (Su and Yajima 2015). The
models were run on Compute Canada, Graham cluster that
mostly used 2×Intel E5-2683 v4 Broadwell @ 2.1GHz proces-
sors with 32 cores in each node. Three parallel chains were
run for each model. Thinning is a common practice done to
reduce autocorrelation in the MCMC sequence by selecting
each kth iteration and discarding the rest. However, thinning
is considered to be very inefficient and unnecessary by many
researchers (Geyer 1992; Maceachern and Berliner 1994; Link
and Eaton 2012). Hence, we performed thinning minimally
with k = 5 for each model. For each model, the number of
MCMC iterations and burn-in (the number of iteration to ig-
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Table 6. Binning scenarios that were used to avoid the effect of overwintering.

Scenario Bins per year Months

1 2 June–September and October–May

2 3 June–September, October–December, and January–May

3 6 June, July, August, September, October–December, and
January–May

nore in the beginning of the chain) were decided based on
the number of steps needed for all parameters of the model
to converge. The exact number of MCMC iterations and burn-
in have been mentioned in the model summary table of each
model (see Table 8 and Tables S1–S5). To assess the conver-
gence, in addition to inspecting trace plots and posterior den-
sities, Gelman–Rubin statistics (Gelman and Rubin 1992) and
effective sample size (ESS) suggested by Kass et al. (1998) were
used.

The Gelman–Rubin statistics that is usually denoted by
R̂ is widely used to determine whether the MCMC chain
has achieved convergence. Calculation of R̂ requires multiple
MCMC chains (usually 3–5). Then, R̂ for a parameter of inter-
est is the variance of the parameter calculated using all the
MCMC chains combined, divided by the average of the vari-
ances within each chain (Kass et al. 1998). A converged series
should result in a R̂ ≈ 1.

ESS is calculated as

ESS = B
1 + 2

∑∞
k=1ρk

(6)

where B is the length of the MCMC chain after burn-in and
ρk is the autocorrelation of the sequence at lag k. In practice,
the infinite sum in the formula is cutoff at a finite k when the
ρk is sufficiently small (ρk < 0.05; Kruschke 2014). ESS can be
used to measure the amount of independent information in
MCMC chain.

To evaluate how well each model fits the data, posterior
predictive checks were performed (King 2012; Gelman et al.
2013). First, we drew a sample of 1500 parameter vectors
from the joint posterior distribution (obtained from the con-
verged MCMC chains) along with the unobserved states cor-
responding to each parameter vector (eq. 3). Then, we pre-
dicted a dataset using each sampled set of values and com-
pared the predicted data with the observed data. In our case,
since the predicted values are categorical, instead of calcu-
lating the Bayesian p value, we explored the probability of
accurately predicting the observed state of a fish in different
environments of the study area.

Model identifiability was accessed by inspecting Bayesian
MCMC outputs (posterior density and trace plots) and pair-
wise correlations between the model parameters obtained us-
ing MCMC chains. A posterior density that is not unimodal
and extends over a large fraction of the parameter space,
and the trace plot with multiple chains that do not con-
verge/mix indicate nonidentifiable models (Siekmann et al.
2012; Simpson et al. 2020). Furthermore, nonidentifiable
models also result in strong correlations between model pa-
rameters (Gimenez et al. 2009; Hines et al. 2014).

Model selection
In this study, the fitted models were compared using the de-

viance information criterion (DIC) proposed by Spiegelhalter
et al. (2002) that measures both the fit and the complexity
of a model and DIC is described as the predictive measure of
choice in Bayesian model selection (Gelman et al. 2013). DIC
can be written as

DIC = D
(
θ̄
) + 2pD(7)

where θ̄ is the posterior mean and pD is the effective number
of parameters given by

pD = D (θ) − D
(
θ̄
)

(8)

where

D (θ) = −2logp
(
y|̂θ) + 2log f (y)(9)

Here, f(y) is the standardizing term that is a function of data
(Spiegelhalter et al. 2002). DIC is “a somewhat Bayesian ver-
sion” of the well-known Akaike information criterion, which
measures both the model fit and the complexity (Gelman
et al. 2013, 2014). In this work, we used a version of DIC that
uses an alternative formulation to pD suggested by Gelman
et al. (2004), which is given below

pV = Var (D (θ)) /2(10)

A model with lower DIC is preferred over a model with larger
DIC. One of the reasons for the popularity of DIC is the com-
putational convenience, since it has been incorporated into
the Bayesian programming languages such as “BUGS” and
“JAGS” (Plummer 2003; Spiegelhalter et al. 2003).

Results
There were 2.34 million records of detection of the selected

188 fish from 1 July 2014 to 1 July 2018 by 30 receivers. The
majority of the detections were recorded by the receivers in
fresh water (1.76 million). The receivers in the estuary envi-
ronment recorded 0.15 million detections, and the receivers
in the marine environment recorded 0.42 million detections.
Among the 188 selected fish, 158 fish were detected at least
once after the initial release.

For all models, the trace plots showed a good mixing and
the Gelman–Rubin statistics was very close to 1 for all the
parameter estimates (R̂ < 1.01). Also, the posterior distribu-
tions were unimodal and the bivariate correlation among
most parameters was weak with a few pairs having moder-
ately strong correlations indicating no convergence or iden-
tifiability issues. ESS estimates were large for all parameters
showing that the MCMC chains contain a sufficient amount
of independent information. The posterior predictive check
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Table 7. Prediction probabilities for the models under differ-
ent binning scenarios.

Scenario 1 Scenario 2 Scenario 3

Model 1 65.9% 69.0% 77.2%

Model 2 75.5% 65.6% 84.7%

Note: Models 1 and 2 refer to the model with two environments and the model
with three environments, respectively. Scenarios 1, 2, and 3 refer to the binning
scenarios in Table 6.

Table 8. Deviance information criterion (DIC) (�DIC) values
for the models under different binning scenarios.

Scenario 1 Scenario 2 Scenario 3

Model 1 1942.6∗ 2811.2 (868.6) 6789.7 (4847.1)

Model 2 2626.9 (684.3) 2603.3 (660.7) 9691.9 (7749.3)

Note: The best model is the model with lowest DIC (marked by an asterisk, ∗).
�DIC is the difference in the DIC scores from best model. Models 1 and 2 refer
to the model with two environments and the model with three environments,
respectively. Scenarios 1, 2, and 3 refer to the binning scenarios in Table 6.

shows all models satisfactory fit to observed data, where the
model fitted with three environments under binning sce-
nario 3 showed the best fit (Table 7). Parameter estimates of
all models had small standard errors. All the models and con-
vergence evaluation results can be found in the supplemen-
tary material (Fig. 2, 3, Figs. S1–S10; Tables 9, 10, and Tables
S1–S10). The model with two environments under scenario 1
showed the minimum DIC value, while the model with three
environments under scenario 3 resulted in the highest DIC
(Table 8). Hence, for making conclusions, we used the model
that resulted in the lowest DIC.

The survival probability in the freshwater envirnoment
(0.95 ± 0.02) was higher than the survival probability in the
marine and estuary environments (0.87 ± 0.02). The recap-
ture probability was also higher in the freshwater environ-
ment than in the marine and estuary environments (Table 9).
The standard errors of all parameter estimates were small.
Furthermore, we observed a difference between the freshwa-
ter to marine and marine to freshwater transition probabili-
ties.

Discussion
Acoustic telemetry is a powerful tool in fisheries research

for studying movement and habitat use (Donaldson et al.
2014; Kraus et al. 2018). More recently, acoustic data have
been used in novel ways for estimating and inferring de-
mographic parameters such as survival and population size
(Donaldson et al. 2014; Crossin et al. 2017; Lees et al. 2021).
In this study, we estimated the survival and recapture prob-
abilities of Arctic char in marine-estuary and freshwater en-
vironments using Bayesian multistate mark–recapture mod-
els and acoustic telemetry data. We found that the survival
probability was generally high (>0.87) and survival estimates
were typically higher in the freshwater compared to that es-
timated for marine and estuary environments. We also found
that the recapture probability was higher in the freshwater
compared to marine and estuary environments. To the best
of our knowledge, this is the first time a Bayesian multistate

capture–recapture framework has been used to estimate the
survival of an Arctic anadromous salmonid. The results of the
study further our understanding of survival in Arctic char
from Canada’s largest commercial fishery for this species, the
results of which may inform fisheries management in the re-
gion. The Cambridge Bay commercial fishery is the largest in
Canada, employing dozens of Nunavummiut annually (DFO
2014) and having information on annual survival will be valu-
able in understanding the viability of these populations and
potential responses to warming Arctic conditions.

Demographic parameter estimation using hierarchical
Bayesian models is becoming more common and has now
been used across a variety of taxa (Clark 2005). For example,
Calvert et al. (2009) applied a hierarchical Bayesian multistate
mark–recapture model with three states to estimate daily
transience and departure of migratory birds. They found that
the parameter estimation can be improved by using the hier-
archical Bayesian approach compared to frequentist nonhier-
archical models. Wu and Holan (2017) also used a Bayesian
hierarchical multipopulation multistate Jolly–Seber model to
estimate the abundance of pallid sturgeon (Scaphirhynchus al-
bus) in the Lower Missouri River. These authors also incor-
porated covariates (sampling efforts for different gear types)
to further improve the model in terms of reducing computa-
tional burden and precision. These studies highlight that the
Bayesian framework when combined with acoustic telemetry
data can be an effective method for estimating demographic
parameters when traditional methods/data are not available.

Similar to our study, Jensen et al. (2019) also presented ev-
idence for higher annual mortality rates for the Arctic char
in the marine environment (Arctic region of Norway) than
in fresh water for fish that were captured using permanent
fish traps during the ice-free period between 1987 and 2012.
These authors suspected that mortality was higher in the
marine environment due to osmoregulation difficulties in
the salt water and higher number of predators in the ma-
rine habitats. Recently, Caza-Allard et al. (2021), also using
a CJS framework, estimated high annual survival probabili-
ties (varying between 0.79 and 0.88) for Cambridge Bay Arc-
tic char in the marine environment, with recapture proba-
bilities varying between 0.64 and 0.90. However, the stan-
dard errors of survival estimates in our study were much
lower than those reported in Caza-Allard et al. (2021), which
were estimated using ordinary CJS models. The lower error
resolved in this study is likely because the Bayesian multi-
state mark–recapture models borrow information through
all environments to estimate the parameters, highlighting
the utility of the Bayesian framework used here. Finally, re-
cent stock assessments completed on stocks of commercially
harvested Arctic char in the region also suggest that overall
natural mortality is low with values between 0.15 and 0.18
(Zhu et al. 2021). However, these authors estimated mortal-
ity for every age class while in this study, we only considered
adult Arctic char in parameter estimation. Including all age
classes would likely inflate mortality estimates as younger
age classes (e.g., juvenile) would be expected to have much
higher mortality. Therefore, mortality for adults alone should
be even lower than what Zhu et al. (2021) reported in their as-
sessment. Thus, our results corroborate previous findings for
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Fig. 2. Posterior plots of parameter estimates for the model with two environments under binning scenario 1. Here, φM and φF

are environment-specific survival probabilities for the marine-estuary environment (M) and freshwater environment (F) while
ψMF and ψFM are movement probabilities; pM and pF are the corresponding detection probabilities. Dashed horizontal lines
represent the prior distributions.
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Arctic char in that survival is generally high in this species
once they are adults.

Adult Arctic char in the study area inhabit fresh water
during the long winter (September–June/July) and migrate to
forage in the marine environment in late June or early July
before returning to fresh water in August or September for
spawning and (or) overwintering purposes (Moore et al. 2016;
Harris et al. 2020a). High survival in both environments is not
surprising, given that Arctic char are a top predator with few
competitors. During the winter months while in fresh water,
the survival probability is likely higher since there are fewer
risks of mortality compared to the marine environment. For
example, there are likely no predators for adult Arctic char
in the freshwater environment, and most fisheries (subsis-
tence and commercial) are executed in marine and estuar-
ine habitats (Day and Harris 2013). The activity level of Arc-
tic char is also greatly reduced when overwintering in fresh
water (Mulder et al. 2018) possibly reducing their chances of
encountering potential threats to survival. In the marine en-
vironment, the mortality can be expected to be higher due
to these fishing activities and possibly due to predators such
as seals, which are known to predate on char in other re-
gions (Moore 1975; Jensen et al. 2019). The difference in the
detection probability between the two environments can be
accounted for by the difference in the receiver cover. In fresh
water, there is a higher probability that the receiver would de-
tect a fish than in the marine and estuary environments. One
reason for the higher detection probability in fresh water is
that the river funnels the fish that migrate to estuary and ma-
rine environments. Also, once there is ice on the lake surface,

the detection range of the tags improves resulting in a higher
probability of detection (Moore et al. 2016; Munaweera et al.
2021).

The model we developed in this study is directly applica-
ble for analyzing acoustic telemetry data from other stud-
ies incorporating a fixed array of receivers and where the
study species is monitored in multiple habitats (i.e., anadro-
mous and catadromous fishes) for which survival estimates
are wanted. However, for long-term studies (>5 years) it is
possible that the acoustic array may not be static through-
out the study period due to a variety of reasons (e.g., lost re-
ceivers, changed objectives, etc.). In these cases, we recom-
mend the reader maintain an approximately fixed receiver ar-
ray throughout the duration of the study in order to improve
parameter estimates. In our study, we filtered the data set by
removing some receivers and some fish tagged before 2014 so
that the receiver array was fixed throughout the study period.
Even though we had to remove a significant amount of data,
this allowed us to assume that the detection probabilities for
each environment were fixed over time allowing us to use
a simpler model with lower number of parameters. Using a
simpler model allowed us to avoid issues such as nonconver-
gence and large computational burden. All the models we at-
tempted in this study were completed in less than 2 hours ex-
cept for the model with three environments under scenario
3, which required about 4 hours to complete. Furthermore,
users of this model must take into consideration varying
detection probability among environments. A reference tag
experiment conducted in different environments under dif-
ferent conditions (e.g., ice on/off) would be ideal in this situa-
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Fig. 3. Trace plots of parameter estimates for the model with two environments under binning scenario 1. Here, φM and φF

are environment-specific survival probabilities for the marine-estuary environment (M) and freshwater environment (F) while
ψMF and ψFM are movement probabilities; pM and pF are the corresponding detection probabilities. [Colour online.]

Table 9. Parameter estimates for the model with two environments under binning scenario 1.

95% credible interval

Parameter Mean Standard error Lower Upper R̂ ESS

pM 0.43 0.04 0.36 0.51 1.001 9000

pF 0.73 0.07 0.62 0.88 1.001 9000

φM 0.87 0.02 0.82 0.91 1.001 9000

φF 0.95 0.02 0.91 0.99 1.002 2700

ψMF 0.25 0.03 0.19 0.32 1.001 9000

ψFM 0.47 0.05 0.38 0.57 1.001 5900

Deviance 1489.13 30.12 1426.87 1543.83 1.002 2700

Note: Here, φM and φF are environment-specific survival probabilities for the marine-estuary environment (M) and freshwater
environment (F), while ψMF and ψFM are movement probabilities, and pM and pF are the corresponding detection probabilities.
R̂ denotes Gelman–Rubin statistics and ESS is the effective sample size. The model was estimated using three MCMC chains
each with 20 000 iterations, 5000 burn-in with thinning by selecting each fifth iteration.
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Table 10. Bivariate correlations between parameters for the
model with two environments under binning scenario 1.

pM pF φM φF ψMF ψFM

pM 1.00 —— —— —— —— ——

pF −0.53 1.00 —— —— —— ——

φM −0.11 0.13 1.00 —— —— ——

φF −0.31 0.01 −0.27 1.00 —— ——

ψMF 0.33 −0.31 −0.12 −0.11 1.00 ——

ψFM −0.52 0.61 0.02 0.23 −0.04 1.00

Note: Here, φM and φF are environment-specific survival probabilities for the
marine-estuary environment (M) and freshwater environment (F) while ψMF and
ψFM are movement probabilities; pM and pF are the corresponding detection
probabilities.

tion to support the constant detection probabilities assump-
tion over time (Munaweera et al. 2021). However, such data
do not exist for the study region at this point. As a conse-
quence of model violation due to temporal varying detection
probabilities, we can expect the estimated parameter to be
biased and hence, less accurate. Another alternative is to ac-
count for the annual changes in the receiver array by adding
temporally varying detection probabilities to the model. Even
though this would allow us to use all the detection records
from all receivers, this will significantly increase the number
of parameters in the model and the computational burden
that can result in nonconvergence. However, as more data be-
come available, this will be a natural extension of the model
presented here. The framework we used in this study can be
easily generalized for a larger number of states. Even though
we did not use the three-environment model (model 2) to
draw conclusions, the model still converged and the standard
errors of the parameter estimates under all three binning sce-
narios were also satisfactory for obtaining separate estimates
of survival for marine, estuary and freshwater environments.

Acoustic telemetry data are more commonly being in-
corporated into fishery and habitat management decision-
making processes (Crossin et al. 2017; Lees et al. 2021), for
example in determining protected areas to preserve criti-
cal fish habitats (Halpern 2003; Goodchild 2004; Lea et al.
2016) and fisheries stock assessments aimed at resolving sus-
tainable removal levels (Kneebone et al. 2014; Sippel et al.
2015; Cooke et al. 2016). Acoustic telemetry results in higher
recapture rates than conventional capture–mark–recapture
studies, and therefore, the analysis of acoustic telemetry
data often results in more precise estimates of demographic
parameters, including survival, mortality, and abundance
compared to conventional capture–mark–recapture studies
(Pollock et al. 2004; Dudgeon et al. 2015; Kraus et al. 2018).
Hence, the management decisions based on acoustic teleme-
try information can be developed with less uncertainty (Lees
et al. 2021). Our data have provided a multiyear perspective
on the annual survival of adult Arctic char highlighting differ-
ences among environments (freshwater vs. estuary/marine).
It is not clear what mortality rates would be detrimental to
Arctic char population persistence in the region but Johnson
(1980) suggested that an 11% harvest rate would be excessive.
This would suggest that our estimates of survival leave the

possibility that the mortality rate is above the level consid-
ered safe, which might be concerning from a fisheries man-
agement perspective. However, our estimates are for annual
survival, which would include other mortality-related factors
such as predation and senescence. Furthermore, others have
estimated mortality rates (Harris et al. 2021) and exploitation
rates (Day and Harris 2013) in excess of 11% for fisheries in
the region that have still been deemed sustainable. As men-
tioned above, it is unclear as to what harvest rates would be
considered detrimental to stock health, and further work is
required in order to shed light on this important knowledge
gap in the region and for Arctic char in general. Overall, the
relatively high survival rate for adult Arctic char for all the
environments in the region, combined with recent assess-
ments that have suggested at least some stocks are consid-
ered healthy (Day and Harris 2013; Zhu et al. 2021; Harris
et al. 2021), suggests that the contemporary fishery manage-
ment strategies in the region are likely effective.

In this study, we used acoustic telemetry data to estimate
the survival and recapture probabilities of adult Arctic char
in different environments. The parameter estimates in this
study generated using Bayesian multistate mark–recapture
models were more precise than those reported in previous
studies in the region using the traditional CJS models. The
models we used did not suffer from convergence issues and
convergence was achieved quickly. Hence, Bayesian multi-
state mark–recapture models incorporating acoustic teleme-
try data can be recommended as a suitable alternative for
estimating demographic parameters such as survival com-
pared to the conventional CJS models. Anadromous fishes
that migrate between marine and freshwater environments
throughout their lives are common across the Canadian Arc-
tic. These fishes, including the Arctic char studied here but
also Dolly Varden char (Salvelinus malma malma), anadromous
lake trout (Salvelinus namaycush), and multiple whitefishes and
ciscoes (Coregonus spp.), all share a relatively similar life his-
tory in that they forage in marine habitats in the summer
before migrating back to fresh water to spawn and (or) over-
winter. This group of fishes is also highly sought after in
subsistence and commercial fisheries throughout the Cana-
dian Arctic where they are important for local economies,
food security, health, and maintaining traditional cultures
(e.g., Government of Nunavut 2016). The results of our study
are relevant for future telemetry projects on Arctic anadro-
mous fishes, and the Bayesian multistate capture–recapture
models we employed here could inform survival and mortal-
ity in other regions on other important species with simi-
lar life histories. Furthermore, there are currently multiple
projects across the Canadian Arctic that are using, or have
recently used, acoustic telemetry for inferring spatiotempo-
ral aspects of migrations and habitat use in anadromous
Arctic char (Smith 2020; Hammer et al. 2022; Hollins et al.
2022). Therefore, our results are widely applicable to these
other studies that have already generated acoustic teleme-
try data for anadromous Arctic char and the model proposed
here may prove valuable for shedding additional light on the
mortality and survival of this species, which will be useful
in developing future fishery conservation and management
plans effectively. This will be valuable in ensuring the long-
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term sustainability of this culturally and commercially im-
portant resource to Inuit across the Canadian Arctic.
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